8 (495) 744-00-11
discount button

Расчет элементов стальных конструкций по СНиП

Программа Кристалл предназначена для выполнения проверок элементов и соединений стальных конструкций на соответствие требованиям СНиП II-23-81* "Стальные конструкции. Нормы проектирования", а также СП 53-101-96, СП 16.13330, ДБН В.2.6-163:2010. Кроме того, при создании программы использовались связанные со СНиП II-23-81* государственные стандарты, "Пособие по проектированию стальных конструкций (к СНиП II-23-81*) / ЦНИИСК им. Кучеренко" и некоторые методологические положения подготовленных, но еще не введенных в действие проектов новых норм СНиП 53-1-96 "Стальные конструкции. Нормы проектирования".

 

Соответствие СНиП подтверждено сертификатом Госстроя России.

Возможности

В программе реализованы следующие режимы работы:

Стали - основной задачей является реализация рекомендаций СНиП, СП, ДБН по выбору марок стали. Кроме того, выдаются справки о соответствии классов стали по ГОСТ 27771-88 маркам стали по ГОСТ или ТУ, а также справочные данные о механических характеристиках.

Сортамент металлопроката - обеспечивает просмотр сортаментов металлопроката с выдачей всех характеристик профилей.

Болты - используется для просмотра сортамента болтов с указанием их класса.

Предельные гибкости - просмотр рекомендаций нормативных документов по назначению предельных гибкостей.

Коэффициенты условий работы - просмотр и выбор значений коэффициентов условий работы элементов.

Огибающие - определяются невыгодные сочетания многих нагрузок, которые действуют на изгибаемые элементы, строятся огибающие эпюры моментов и поперечных сил.

Геометрические характеристики - вычисляются все геометрические характеристики поперечного сечения (включая секториальные моменты инерции).

Расчетные длины - реализованы рекомендации СНиП и Еврокод-3. В результате работы можно получить значения коэффициента расчетной длины.

Сопротивление сечений - определяются коэффициенты использования ограничений для любого из предусмотренных программой типов поперечных сечений при действии произвольных усилий. Кроме того, строятся кривые взаимодействия для любых допустимых комбинаций пар усилий.

Болтовые соединения - для различных конструктивных решений болтовых соединений определяются коэффициенты использования ограничений и строятся кривые взаимодействия допустимых комбинаций пар усилий.

Фрикционные соединения - аналогичен предыдущему режиму, но с другим набором конструктивных решений на основе использования высокопрочных болтов с контролируемым натяжением.

Сварные соединения - для различных конструктивных решений сварных соединений коэффициенты использования ограничений и строятся кривые взаимодействия допустимых комбинаций пар усилий.

Местная устойчивость - проверка местной устойчивости стенок и поясных листов изгибаемых и сжатых элементов, при этом не рассматриваются подкрановые балки, а также балки со стенкой, подкрепленной продольными ребрами.

Элементы ферм - реализуются все необходимые проверки элементов ферм на прочность, устойчивость и предельную гибкость для схем конструкций, наиболее часто используемых на практике. Определяются расчетные значения усилий и их сочетаний от задаваемых вертикальных внешних нагрузок. Предусмотрен подбор сечений.

Балки - режим аналогичен предыдущему, но ориентирован на анализ и проектирование сварных и прокатных балок с различными условиями опирания.

Стойки - режим аналогичен предыдущему, но ориентирован на анализ и проектирование колонн и стоек различного поперечного сечения.

Опорные плиты - рассматриваются пластины, составляющие базу колонны, при различных вариантах их окаймления ребрами.

Неразрезные балки - режим аналогичен режиму Балки.

Удобный интерфейс

Программа работает в операционной среде Windows Vista/7/8/10. Организация пользовательского диалога и элементы управления полностью соответствуют этой среде.

Документирование работы

Результаты вычислений могут быть представлены в виде иллюстрированного отчета, создаваемого автоматически. Отчет передается в любое приложение Windows, ассоциированное с форматом RTF (например, Word).

Help (Справочная информация)

Программа снабжена подробной справочной информацией, которая включает описание пользовательского интерфейса и правил работы с программой.

SCAD - вычислительный комплекс для прочностного анализа конструкций методом конечных элементов

Вычислительный комплекс SCAD реализован как интегрированная система прочностного анализа и проектирования конструкций на основе метода конечных элементов.

 

Единая графическая среда синтеза расчетной схемы и анализа результатов обеспечивает неограниченные возможности моделирования расчетных схем от самых простых до самых сложных конструкций, удовлетворяя потребностям опытных профессионалов и оставаясь при этом доступной для начинающих.

Высокопроизводительный процессор позволяет решать задачи большой размерности (сотни тысяч степеней свободы при статических и динамических воздействиях).

SCAD включает развитую библиотеку конечных элементов для моделирования стержневых, пластинчатых, твердотельных и комбинированных конструкций, модули анализа устойчивости, формирования расчетных сочетаний усилий, проверки напряженного состояния элементов конструкций по различным теориям прочности, определения усилий взаимодействия фрагмента с остальной конструкцией, вычисления усилий и перемещений от комбинаций загружений. В состав комплекса включены программы подбора арматуры в элементах железобетонных конструкций и проверки сечений элементов металлоконструкций.

Система постоянно развивается, совершенствуются интерфейс пользователя и вычислительные возможности, включаются новые проектирующие компоненты.

Соответствие СНиП подтверждено сертификатом Госстроя России.

Вычислительные возможности

  • высокая скорость расчета
  • развитая библиотека конечных элементов
  • эффективные методы оптимизации матрицы жесткости

Моделирование конструкций

  • развитые графические средства формирования и корректировки геометрии расчетных схем, описания физико-механических свойств материалов, задания условий опирания и примыкания, а также нагрузок
  • большой набор параметрических прототипов конструкций, включающий рамы, фермы, балочные ростверки, оболочки, поверхности вращения, аналитически заданные поверхности
  • автоматическая генерация произвольной сетки конечных элементов на плоскости
  • возможность формирования сложных расчетных моделей путем сборки из различных схем
  • широкий выбор средств графического контроля всех характеристик расчетной схемы
  • возможность работы на сетке разбивочных (координационных) осей
  • развитый механизм работы с группами узлов и элементов
  • формирование расчетной модели путем копирования всей схемы или ее фрагментов
  • импорт геометрии из систем ArchiCAD, HyperSteel, чтение данных в форматах DXF, DWG

Результаты

  • результаты расчета отображаются как в графической, так и в табличной формах
  • в графической форме результаты расчета перемещений выводятся в виде деформированной схемы, цветовой и цифровой индикации значений перемещений в узлах, а также изополей и изолиний перемещений для пластинчатых и объемных элементов, выполняется анимация форм колебаний для динамических и процесса деформирования для статических загружений
  • для стержневых элементов могут быть получены деформированные схемы с учетом прогибов, а также эпюры прогибов для отдельных элементов
  • усилия в стержневых элементах представляются в виде эпюр для всей схемы или отдельного элемента, а также цветовой индикацией максимальных значений выбранного силового фактора
  • усилия и напряжения в пластинчатых и объемных элементах выводятся в виде изополей или изолиний в указанном диапазоне цветовой шкалы с возможностью одновременного отображения числовых значений в центрах и узлах элементов
  • графическое представление результатов работы постпроцессора подбора арматуры в элементах железобетонных конструкций в виде эпюр для стержневых и изополей или изолиний распределения арматуры для пластинчатых элементов
  • возможность локализации результатов расчета в заданном диапазоне значений перемещений и силовых факторов
  • результаты расчета в табличной форме могут экспортироваться в редактор MS Word или электронные таблицы MS Excel
  • табличное представление результатов может быть дополнено графическими материалами, отобранными в процессе создания расчетной схемы и анализа результатов
  • экспорт результатов подбора арматуры в плитах и перекрытиях в систему AllPlan

Проектирование

  • подбор арматуры в сечениях элементов железобетонных конструкций для стержневых и пластинчатых элементов по предельным состояниям первой и второй группы
  • проверка несущей способности и подбор сечений элементов стальных конструкций из прокатных профилей

Обмен данными с другими программами

SCAD обеспечивает обмен данными с другими программами используя

  • универсальные форматы (IFC, CIS/2, DXF, DWG);
  • форматы данных программ Advance Steel (версии 2014, 2015, 2016), ANSYS, STAAD, Abacus, Femap, GMSH, NetGen;
  • плагины для программ Revit (версии 2013, 2014,2015, 2016, 2017, 2018), ArchiCAD (версии 16,17,18, 19, 20), Tekla (версии 18 19 20 21, 2016, 2017).

Help (Справочная информация)

Программа снабжена подробной справочной информацией, которая включает описание пользовательского интерфейса и правил работы с программой.

 

Программный продукт nanoCAD СКС предназначен для автоматизированного проектирования структурированных кабельных систем (СКС) зданий и сооружений различного назначения, кабеленесущих систем и телефонии.

купить nanoCAD СКС

Область применения

Специализированное программное обеспечение nanoCAD СКС – инструмент, позволяющий повысить эффективность труда при проектировании структурированных кабельных систем, на сленге проектировщиков – «слаботочки». Наличие собственного графического ядра делает nanoCAD СКС независимым от других графических систем, поддержка формата *.dwg способствует обмену информации со смежниками и заказчиками.

В nanoCAD СКС сочетаются удобный, специально сконструированный интерфейс, точно подобранные и настроенные инструменты графического отображения, а также средства для выполнения необходимых расчетов при подборе оборудования.

Программный продукт nanoCAD СКС позволяет решать следующие задачи:

  • консолидация информации по проекту;
  • создание системы кабельных каналов;
  • проектирование горизонтальной подсистемы;
  • проектирование магистральной подсистемы здания;
  • проектирование распределительных пунктов этажа и здания;
  • проектирование магистральных кабелей и кроссов телефонии здания;
  • автоматическая трассировка кабелей;
  • автоматическое составление отчетных документов (спецификация, кабельные журналы, схемы компоновки монтажных конструктивов, структурная схема).

 

Ядро системы

nanoCAD – российская универсальная САПР-платформа, содержащая все необходимые инструменты базового проектирования и выпуска чертежей.

Удобство и «дружественность» nanoCAD обеспечиваются принятыми традиционными методами работы и знакомым интерфейсом. Освоить nanoCAD сможет практически любой проектировщик, имеющий опыт работы в популярных САПР: меню, иконки кнопок, панели и командная строка легко узнаваемы. Все это позволяет быстро приступить к работе, затратив минимум времени на переобучение персонала.

 

Организация работы


Одним из факторов успешного выполнения проекта является доступ к информации по проекту. Работа в nanoCAD СКС построена вокруг инструмента Менеджер проекта – фактически центральной базы данных проекта, которая содержит чертежи, автоматически формируемые отчеты и результаты расчетов, а также позволяет собрать все необходимые документы для выполнения проекта (техническое задание, пояснительные записки и т.п.). Также Менеджер проекта позволяет использовать привязанные к производителям базы оборудования и управлять доступом к ним, обеспечивает назначение и перенастройку под проект параметров оборудования, максимально детализируя проект и организуя коллективную работу отдела (группы) проектирования с едиными согласованными данными.

nanoCAD СКС. Менеджер проекта

Программа nanoCAD СКС позволяет загружать векторную архитектурно-строительную подоснову плана сооружения. Поддерживаются файлы *.dwg, созданные как в AutoCAD или в любых приложениях к нему, так и в других программах, поддерживающих этот формат.

К программе nanoCAD СКС прилагаются 16 баз данных производителей кабельных систем, шкафов и кабеленесущих систем. Прозрачный импорт оборудования из баз производителей позволяет иметь под рукой любое представленное в базах оборудование для более быстрого и успешного выполнения проекта. Все базы данных открыты для редактирования, к тому же у пользователя всегда есть возможность создавать любые другие базы производителей оборудования.

nanoCAD СКС. Базы производителей оборудования

Также реализована возможность организовать для группы пользователей общую сетевую библиотеку баз данных оборудования, которую можно разместить на сервере и указать к ней путь. При запуске программы в фоновом режиме происходит синхронизация локально расположенных баз данных пользователя с сетевой. Это позволяет группе пользователей применять общие базы данных производителей с возможностью полноценной работы при отсутствии подключения к сетевой библиотеке.

nanoCAD СКС. Настройка баз данных оборудования

Моделирование

nanoCAD СКС – это переход от работы с отдельными чертежами к моделированию проектируемой системы без принципиального изменения приемов и методов проектирования. Информационная модель системы позволяет спроектировать систему именно так, как она будет смонтирована в действительности, а рабочую документацию получить в максимально автоматизированном режиме. Кроме того, единая модель системы обеспечивает возможность оперативно вносить изменения – любые изменения влияют на связанную между собой информацию, что сокращает число ошибок и несогласований. Фактически nanoCAD СКС позволяет уйти от черчения и сконцентрироваться на проектной деятельности, намного детальнее и точнее прорабатывая проектное решение.

В целом построение информационной модели в процессе проектирования позволяет:

  • максимально приблизить проект к условиям монтажа и эксплуатации системы;
  • производить расчеты с учетом технических характеристик используемого в проекте оборудования;
  • Использовать медоты оценочного расчета оборудования;
  • иметь всегда актуальную и согласованную информацию по проекту;
  • моментально вносить графические и технические изменения.


Создание струкрурированных кабельных систем

При использовании программы nanoCAD СКС пользователь имеет возможность работы со следующими подсистемами СКС:

Подсистема рабочего места

При работе с подсистемой рабочего места учитываются различные варианты установки рабочих мест (на стену, в короб, лючок, сервисную колонну и т.п.), а также любые варианты комплектации каждого рабочего места. Рабочие места могут быть установлены как вручную, так и в автоматическом режиме, по площади на одно рабочее место. Каждый порт рабочего места имеет индивидуальную маркировку, а использование масок маркировки позволяет с легкостью изменить маркировку во всем проекте за несколько нажатий клавиш мыши. Также, в любой момент выполнения проекта можно изменить состав, комплектацию и параметры установки каждого рабочего места, и его графическое обозначение на чертеже.

Горизонтальная подсистема

Трассировка кабеля горизонтальной подсистемы происходит в автоматическом режиме, как по кабельным каналам, так и по координатам установки соединяемого оборудования при оценочном расчете кабеля. При трассировке кабеля учитываются его запасы на укладку в кабельных каналах, укладку в шкафу и укладку в коробе со стороны рабочего места. Все это позволяет с невероятной точностью в считанные секунды подсчитывать количество кабеля горизонтальной подсистемы для всего проекта и отобразить полученное значение в спецификации.

Магистральная подсистема здания

При моделировании пользователь программы nanoCAD СКС связывает все этажи здания в единую модель, что позволяет без труда трассировать кабель магистральной подсистемы здания между чертежами этажей даже расположенных в разных *.dwg-файлах. Кабель магистральной подсистемы здания трассируется в автоматическом режиме с учетом запасов на укладку в кабельных каналах и укладку в шкафах. В nanoCAD СКС магистральная подсистема здания может быть реализована с использованием различных передающих сред (оптика и медь), а также, на любом типе кабеля.

Подсистема телекоммуникационной

При работе со шкафами в nanoCAD СКС существует возможность их автоматического заполнения кроссовым оборудованием исходя из количества портов рабочих мест. При автоматическом заполнении могут быть учтены как панели кросса СКС, так и панели телефонного кросса и коммутаторы или панели второго представления портов коммутаторов, если последние располагаются в другом шкафу или используются панели с управляемыми соединениями. После автоматической установки оборудования возможно сразу же сформировать схему шкафа на отдельном чертеже, и, если результаты компоновки не соответствуют условиям выполняемого проекта, внести изменения в порядок расположения оборудования и добавить дополнительное оборудование.

Создание системы кабельных каналов

Программный продукт nanoCAD СКС позволяет создавать системы кабельных каналов практически любой сложности. В программе используются три основных типа кабельных каналов: лотки, трубы и короба. Установка свойств кабельных каналов осуществляется путем создания конфигураций.

nanoCAD СКС. Плавающее окно прокладки каналов

Каждая конфигурация может быть построена на одном и том же типоразмере кабельного канала, но иметь различные узлы крепления и конфигурации соединительных элементов, и, соответственно, может иметь различное отображение на чертеже.

В программе реализована функция по определению ориентации трассы, что позволяет автоматически определять типы используемых соединительных элементов при поворотах трассы, например, внутренние и внешние углы для коробов.

При настройках конфигураций лотков можно настраивать и использовать конфигурации узлов крепления. Использование конфигураций узлов крепления позволяет не только получать детальную спецификацию, но и автоматически создавать сечения лотков с количеством проложенных в указанном сечении кабелей. Также, сечения поддерживают автоматическое обновление, как при смене направления взгляда, так и при изменении количества проложенных кабелей в лотке.

При прокладке каналов на чертеже используется плавающее окно, в котором есть возможность переключать параметры непосредственно в процессе прокладки кабеленесущих систем или сразу же выбрать все параметры для прокладки с ранее проложенных каналов.

После трассировки кабеля по кабельным каналам происходит расчет емкости кабельных каналов с учетом всех типов проложенных кабелей, а также с учетом максимального процента заполнения каждого типа кабельного канала. Если поперечное сечение кабелей выше допустимого для кабельного канала, то программа выдаст ошибку в окне проверок.

Также, в программе реализована возможность автоматической расстановки коробов в помещениях для установки рабочих мест. Короба устанавливаются на заданные пользователем высоту и отступ от конструкций, с учетом геометрии помещения, а также, при поворотах короба автоматически устанавливаются соединительные элементы.

nanoCAD СКС. Сечения лотков


Работа с электротехнической моделью

Все соединения в проекте осуществляются с помощью единой электротехнической модели (ЭТМ), которая позволяет быстро и безошибочно создать соединения как горизонтальной, так и магистральной подсистемы здания.

nanoCAD СКС. Электротехническая модель проекта

ЭТМ проекта включает в себя команды, дублирующие команды панели инструментов программы, которые позволяют, не открывая чертежа, осуществлять перемаркировку объектов. В ЭТМ доступны для просмотра и редактирования все свойства объектов, задействованных в соединениях.

Одним из новых и востребованных инструментов ЭТМ является автоматическое заполнение шкафа панелями на основании количества портов рабочих мест. Существует возможность выбрать панели кросса СКС, и при необходимости панелей телефонного кросса и коммутаторов или панелей второго представления портов коммутаторов.

Общая электротехническая модель кабельной системы формируется:

  • при выполнении автоматической трассировки кабеля по кабельным каналам — как по горизонтальным, так и по вертикальным участкам;
    маркировкой оборудования, участвующего в соединениях кабельной системы. Значения маркировки автоматически обновляются при внесении изменений в проект;
  • При анализе электротехнической модели программа выдает сведения об объектах или соединениях, не прошедших проверку, и специально отображает их.


3D-модель проектируемой системы

В качестве отчетного документа может быть использована и 3D-модель плана этажа. 3D-модель создается на основе расставленного оборудования и проложенных кабельных каналов, а также, присутствия в каждом объекте, установленном на плане этажа параметра высоты.

Формирование 3D-модели происходит непосредственно на чертеже плана этажа, что позволяет иметь доступ к объектам, изменять их характеристики.

nanoCAD СКС. 3D-модель кабельных каналов

При создании 3D-модели каждый элемент размещается в собственный слой, что позволяет регулировать видимость объектов на *.dwg-файлах.

Также 3D-модель системы можно создавать в отдельном *.dwg-файле для всего объекта в целом.

nanoCAD СКС. 3D-модель аппаратной

Созданные 3D-модели можно использовать в качестве дополнительного контроля корректности установки оборудования на плане этажа.

Благодаря возможности добавлять оборудованию реалистичное 3D-представление можно создавать реалистичные виды его установки на проектируемом объекте.

 

Выгрузка в IFC

nanoCAD СКС позволяет выгружать информационную модель проектируемой системы в формат IFC (Industry Foundation Classes), предназначенный для обмена информацией в строительстве. Благодаря этому информационные модели структурированных кабельных систем, выполненные в nanoCAD СКС, без каких-либо затруднений вливаются в общую информационную модель проектируемого объекта, реализуемую на любой BIM-платформе, будь то ARCHICAD, Revit, Allplan или какая-либо другая. Таким образом, nanoCAD СКС полностью соответствует основным принципам OpenBIM-проектирования.

nanoCAD СКС. Модель проектируемой системы в формате IFC

Документирование проекта

nanoCAD СКС позволяет не только минимизировать ошибки при проектировании, но и получить в автоматизированном режиме сформированные отчетные документы в соответствии с отечественными стандартами и выгрузить их либо на поле чертежа, либо во внешние системы Microsoft Office, OpenOffice.org. В частности, пользователь в любой момент может получить следующие согласованные документы:

  • рабочие чертежи поэтажных планов, оформленные в соответствии с отечественными стандартами, с автоматически промаркированным оборудованием и расставленными выносками, а также с возможностью добавления рамки по ГОСТ Р 21.1101-2013;
  • три варианта кабельного журнала, позволяющие отслеживать связи горизонтальной и магистральной подсистем здания;
  • ведомость чертежей основного комплекта, ведомость ссылочных и прилагаемых документов по ГОСТ 21.1101-2013;
  • экспликация помещений по ГОСТ 21.501-93;
  • таблицы прокладки кабеля;
  • таблица используемых УГО, с возможностью ее создания как для всего проекта, так и для каждого плана этажа;

nanoCAD СКС. Таблица УГО на чертеже

  • отчет по рабочим местам, отображающий количество установленных рабочих мест и количество и типы портов рабочих мест как по помещениям, так и по этажам, а также и по всему зданию;
  • спецификация оборудования и материалов по ГОСТ 21.110-95. Данные вносятся в спецификацию по принципу «что внесено в план этажа, то включено и в отчет» с возможностью коррекции выводимого документа. Существует возможность создания поэтажных спецификаций проекта;

nanoCAD СКС. Спецификация оборудования

  • автоматически создаваемая схема заполнения монтажного шкафа коммутационным оборудованием;

nanoCAD СКС. Схема компоновки монтажного шкафа

  • автоматически генерируемая структурная схема соединений;


При создании спецификации для таких элементов как кабели и кабельные каналы существует возможность выбирать единицы измерения (метры, бухты, упаковки).

Настройка графических свойств объектов и характера отображения элементов чертежа производится редактором Настройка СКС. Настройка текстового, размерного стилей, стилей типов линий, толщин линий, координат и единиц осуществляется средствами nanoCAD.

Подготовка чертежей к печати производится в Мастере печати nanoCAD. Подготовку к печати документов MS Excel и MS Word, входящих в проект, осуществляют соответственно диспетчеры печати MS Excel и MS Word.

Программный продукт nanoCAD ОПС предназначен для автоматизированного проектирования охранно-пожарной сигнализации, систем контроля и управления доступом (СКУД) зданий и сооружений различного назначения.

nanoCAD ОПС сочетает в себе удобный, специально сконструированный интерфейс, точно подобранные и настроенные инструменты графического отображения, возможность выполнения необходимых расчетов при подборе оборудования.

купить nanoCAD ОПС

Область применения

Специализированное программное обеспечение nanoCAD ОПС – второй инструмент для проектировщиков «слаботочки», разработанный с учетом основных стандартов СП 5.13130.2009, СП 3.13130.2009, РД 25.953-90, РД 78.36.002-99, РМ 78.36.001-99, НПБ 160-97, ГОСТ Р 21.1101-2013. Наличие собственной графической платформы делает nanoCAD ОПС независимым от других графических систем, а поддержка формата *.dwg способствует обмену информацией со смежниками и заказчиками.

Программный продукт nanoCAD ОПС позволяет осуществлять комплексное проектирование систем:

  • пожарной сигнализации;
  • оповещения;
  • охранной сигнализации;
  • контроля и управления доступом;
  • видеонаблюдения;
  • кабельных каналов;
  • порошкового и газового пожаротушения.

Ядро системы

nanoCAD Plus – российская универсальная САПР-платформа, содержащая все необходимые инструменты базового проектирования и выпуска чертежей.

Удобство и «дружественность» nanoCAD Plus обеспечиваются принятыми традиционными методами работы и знакомым интерфейсом. Освоить nanoCAD Plus сможет практически любой проектировщик, обладающий опытом работы в популярных САПР: меню, иконки кнопок, панели и командная строка легко узнаваемы. Все это позволяет быстро приступить к работе, затратив минимум времени на переобучение персонала.

Организация работы

Одним из факторов успешного выполнения проекта является доступ к информации по проекту. Работа в nanoCAD ОПС построена вокруг инструмента Менеджер проекта – фактически центральной базы данных проекта, которая содержит чертежи, автоматически формируемые отчеты и результаты расчетов, а также позволяет собрать все необходимые документы для выполнения проекта (техническое задание, пояснительные записки и т.п.). Также Менеджер проекта позволяет использовать привязанные к производителям базы оборудования и управлять доступом к ним, обеспечивает назначение и перенастройку под проект параметров оборудования, максимально детализируя проект и организуя коллективную работу отдела (группы) проектирования с едиными согласованными данными.

Программа nanoCAD ОПС позволяет загружать векторную архитектурно-строительную подоснову плана сооружения. Поддерживаются файлы *.dwg, созданные как в AutoCAD или в любых приложениях к нему, так и в других программах, поддерживающих этот формат.

К программе nanoCAD ОПС прилагаются 30 баз данных производителей охранно-пожарных систем, извещателей, систем оповещения и кабеленесущих систем. Прозрачный импорт оборудования из баз производителей позволяет иметь под рукой любое представленное в базах оборудование для более быстрого и успешного выполнения проекта. Все базы данных открыты для редактирования. Кроме того, у пользователя всегда есть возможность создавать любые другие базы производителей оборудования.

Также реализована возможность организовать для группы пользователей общую сетевую библиотеку баз данных оборудования, которую можно разместить на сервере и указать к ней путь. При запуске программы в фоновом режиме происходит синхронизация локально расположенных баз данных пользователя с сетевой. Это позволяет группе пользователей применять общие базы данных производителей с возможностью полноценной работы при отсутствии подключения к сетевой библиотеке.

Моделирование

nanoCAD ОПС – это переход от работы с отдельными чертежами к моделированию проектируемой системы без принципиального изменения приемов и методов проектирования. Информационная модель системы позволяет спроектировать систему именно так, как она будет смонтирована в действительности, а рабочую документацию получить в максимально автоматизированном режиме. Кроме того, единая модель системы обеспечивает возможность оперативно вносить изменения – любые изменения влияют на связанную между собой информацию, что сокращает число ошибок и несогласований. Фактически nanoCAD ОПС позволяет уйти от черчения и сконцентрироваться на проектной деятельности, намного детальнее и точнее прорабатывая проектное решение.

В целом построение информационной модели в процессе проектирования позволяет:

  • использовать оценочные методы расчета оборудования на предпроектном этапе;
  • максимально приблизить проект к условиям монтажа и эксплуатации системы;
  • автоматически расставлять пожарные извещатели различных типов в соответствии с требованиями СП 5.13130.2009;
  • производить расчеты с учетом технических характеристик используемого в проекте оборудования;
  • иметь всегда актуальную и согласованную информацию по проекту;
  • моментально вносить графические и технические изменения.

Расстановка оборудования ОПС и СКУД

В рамках информационной модели nanoCAD ОПС позволяет автоматически расставлять пожарные извещатели по помещениям с учетом различных условий их установки и параметров помещений.

Некоторые способы автоматической установки пожарных извещателей:

  • расстановка точечных пожарных извещателей согласно требованиям таблиц 13.3 и 13.5 раздела 13 СП 5.13130.2009;
  • расстановка линейных дымовых пожарных извещателей согласно требованиям пп. 13.5.3 и 13.5.4 и таблицы 13.4 раздела 13 СП 5.13130.2009;
  • расстановка точечных пожарных извещателей в пространствах фальшпола и подвесного потолка;
  • расстановка точечных пожарных извещателей согласно требованиям п. 13.3.10 раздела 13 СП 5.13130.2009;
  • учет условий расстановки точечных пожарных извещателей согласно требованию п. 13.3.3 раздела 13 СП 5.13130.2009;
  • учет условий расстановки точечных пожарных извещателей согласно требованию п. 14.1 раздела 14 СП 5.13130.2009 (без учета примечания).


nanoCAD ОПС позволяет расставлять в автоматизированном режиме оборудование СКУД, определяя его состав и высоты установки для всего проекта. В ходе выполнения проекта эти условия могут быть изменены.

Кроме того, nanoCAD ОПС обеспечивает возможность расставлять охранные извещатели и видеокамеры с заданием угла установки оборудования непосредственно при установке на план этажа здания.

Все контроллеры и ППК можно устанавливать не только на чертеж, но и в специальные монтажные шкафы, что позволяет создавать чертежи проекта, максимально соответствующие реально смонтированной системе.

(Чертеж и фотографию предоставил  пользователь Алексей Скурыгин)


Расчет токовой нагрузки

Важнейшим этапом проектирования охранно-пожарных систем является проведение расчетов. В рамках имитационной модели системы проводятся следующие автоматические расчеты с учетом технических характеристик используемого в проекте оборудования:

  • расчет токовой нагрузки на шлейфах;
  • расчет токовой нагрузки на РИП и емкости аккумуляторных батарей;
  • расчет падения напряжения в линии.

Расчет токовой нагрузки на РИП и емкости аккумуляторных батарей ведется от АКБ, добавленных к РИП. К тому же, если РИП поддерживает установку двух АКБ, то программа добавит обе их и автоматически пересчитает параметры РИП по емкости. Кроме того, предусмотрена функция выбора типа подключения АКБ (параллельно или последовательно) для установки правильных значений емкости и напряжения РИП. Емкость РИП можно увеличить путем добавления на чертеж боксов для АКБ и подключения их к РИП.

Расчеты токовой нагрузки на шлейф производятся как в дежурном режиме функционирования системы, так и в режиме «Пожар».

Расчеты токопотребления приборов и устройств могут быть проведены и по максимальной, и по минимальной нагрузке.

Расчеты емкости аккумуляторных батарей РИП производятся как в дежурном режиме функционирования системы, так и в режиме «Пожар», а также с учетом коэффициента использования АКБ.

Расчет оповещателей уровня звука

В nanoCAD ОПС реализован расчет уровня звука речевых и звуковых оповещателей. В зависимости от исполнения оповещателей (настенные или потолочные) программа автоматически рассчитывает расстояние (L-проекцию) от точки установки оповещателей до точки проведения измерений уровня звука на расстоянии 1,5 м от пола в соответствии со СП 3.13130.2009 п. 4.2 в зависимости от угла направленности оповещателя.

Расчет уровня звука осуществляется по формуле:

SPL(L) = SPL(max) – 20 log10 (L),

где

SPL(max) – расчетный параметр, зависящий от мощности оповещателя;

L – расстояние от точки установки оповещателя до точки измерения уровня звука (L-проекция).

После проведения расчета уровня звука оповещателей программа сравнивает полученные значения со значением требуемого уровня звука в помещении с учетом уровня звука постоянного шума. Если уровень звука оповещателей будет ниже требуемого уровня звука в помещении, то программа выдаст ошибку в электротехнической модели и в диалоге Проверки. Кроме того, nanoCAD ОПС контролирует такие параметры, как уровень звука на расстоянии 3 м (не менее 75 дБА по СП 3.13130.2009 п. 4.1) и уровень звука в любой точке защищаемого помещения (не более 120 дБА по СП 3.13130.2009 п. 4.1).

По результатам расчета программа автоматически формирует отчетный документ «Расчет акустики».

По результатам расчета программа автоматически формирует отчетный документ «Расчет акустики».


Расчет углов и зон обзора камер системы видеонаблюдения

Программный комплекс nanoCAD ОПС позволяет производить расчет углов и зон обзора для камер системы видеонаблюдения. Расчет ведется с учетом высоты установки видеокамеры, угла наклона видеокамеры по вертикали и технических характеристик видеокамеры и объектива. В итоге на чертеже формируется отображение углов и зоны обзора с учетом геометрии помещения. Результаты расчета будут сведены в отчетную таблицу, в которой будут отображены не только параметры установленных камер, но и расчет дистанций обнаружения, распознавания и идентификации.

Для видеокамер реализовано диалоговое окно быстрого доступа к свойствам устройств по всему проекту. Окно имеет немодальные характеристики, которые позволяют перемещаться по чертежу и панорамировать его при открытом окне. Окно вызывается посредством контекстного меню на видеокамере или оповещателе в группе команд

В левой части диалогового окна будет отображаться список устройств по всему проекту, в правой – основные свойства выбранного устройства. При двойном щелчке ЛКМ на выбранном устройстве будет происходить фокусировка на устройство на чертеже. Если чертеж не открыт, то программный комплекс nanoCAD ОПС откроет его.

При изменении свойств в правой части диалогового окна изменения углов и зоны обзора камер будут сразу же отображены на чертеже.

Оценочный расчет кабеля

nanoCAD ОПС позволяет производить оценочный расчет кабеля для шлейфов сигнализации. Для этого достаточно расставить оборудование и включить его в шлейфы. Затем программа сама посчитает длину кабеля с учетом координат установки оборудования, а также высот установки соединяемого оборудования.

Если необходимо произвести оценочный расчет кабеля для многоэтажного здания, то достаточно установить УГО межэтажных переходов и объединить их в единый стояк. В этом случае программа будет рассчитывать кабель с учетом перехода с этажа на этаж в заданной отметке поэтажного плана.

После проведения оценочного расчета будет доступна и выгрузка отчетных документов: структурная схема, кабельные журналы с результатами расчета, табличные документы.

Создание шлейфов и трассировка кабеля

Одной из особенностей nanoCAD ОПС является возможность работы со шлейфами сигнализации, которые делятся на три типа: традиционный (неадресный), адресный, информационная линия. Каждый шлейф имеет свои индивидуальные настройки, позволяя максимально приблизить проектируемый объект к условиям его эксплуатации.

В неадресный шлейф будут подключены только неадресные извещатели.

В адресный шлейф будут подключены только адресные извещатели.

В информационную линию будут подключены адресные и адресно-аналоговые извещатели и другие адресные устройства. Также для информационной линии можно устанавливать различные диапазоны адресов для извещателей и адресных устройств.

Программа nanoCAD ОПС позволяет автоматически трассировать кабель по шлейфам сигнализации. Трассировка осуществляется по кабельным каналам с учетом последовательности включения извещателей в шлейф. С помощью распределительных коробок в шлейфе сигнализации можно использовать кабель различных типов.

Работа с электротехнической моделью

Все соединения в проекте осуществляются с помощью единой электротехнической модели, которая позволяет быстро и безошибочно создавать соединения как шлейфов сигнализации, так и интерфейсных шлейфов.

В электротехнической модели доступны для просмотра и редактирования все свойства объектов, задействованных в соединениях. Общая электротехническая модель кабельной системы формируется:

  • при выполнении автоматической трассировки кабеля по кабельным каналам – как по горизонтальным, так и по вертикальным участкам;
  • маркировкой оборудования, участвующего в соединениях кабельной системы. При внесении изменений в проект значения маркировки автоматически обновляются.

При анализе электротехнической модели программа выдает сведения об объектах или соединениях, не прошедших проверку, и отображает их.

3D-модель проектируемой системы

3D-модель создается на основе расставленного оборудования и проложенных кабельных каналов, а также параметра высоты, установленного в каждом объекте на плане этажа.

Формирование 3D-модели происходит непосредственно на чертеже плана этажа, что обеспечивает доступ к объектам, позволяя изменять их характеристики.

При создании 3D-модели каждый элемент размещается в собственный слой, что позволяет регулировать видимость объектов на файлах *.dwg.

Также 3D-модель системы можно создавать в отдельном *.dwg-файле для всего объекта в целом.

Созданные 3D-модели можно использовать в качестве дополнительного контроля корректности установки оборудования на плане этажа.

Благодаря возможности добавлять оборудованию реалистичное 3D-представление можно создавать реалистичные виды его установки на проектируемом объекте.

Выгрузка в IFC

nanoCAD ОПС позволяет выгружать информационную модель проектируемой системы в формат IFC (Industry Foundation Classes), предназначенный для обмена информацией в строительстве. Благодаря этому информационные модели систем безопасности, выполненные в nanoCAD ОПС, без каких-либо затруднений вливаются в общую информационную модель проектируемого объекта, реализуемую на любой BIM-платформе, будь то ARCHICAD, Revit, Allplan или какая-либо другая. Таким образом, nanoCAD ОПС полностью соответствует основным принципам OpenBIM-проектирования.

Структурная схема проекта

nanoCAD ОПС позволяет автоматически формировать структурную схему проекта в целом с возможностью его разбиения по системам.

С помощью конфигураций структурную схему можно настраивать под различные условия выполнения проекта. Назовем настраиваемые параметры структурной схемы:

  • типы подключаемых устройств в структурной схеме для создания структурной схемы различных систем;
  • размеры для расстановки устройств на структурной схеме;
  • выгрузка структурной схемы в полном или сокращенном варианте. Полный вариант описывает связи между всеми устройствами, участвующими в проекте. Сокращенный вариант подразумевает сокращение количества однотипных устройств;
  • выгрузка структурной схемы в различных форматах.

Документирование проекта

nanoCAD ОПС позволяет не только минимизировать ошибки при проектировании, но и получить в автоматизированном режиме сформированные отчетные документы в соответствии с отечественными стандартами и выгрузить их либо на поле чертежа, либо во внешние системы Microsoft Office, OpenOffice.org. В частности, пользователь в любой момент может получить следующие согласованные документы:

  • рабочие чертежи поэтажных планов, оформленные в соответствии с отечественными стандартами, с автоматически промаркированным оборудованием и расставленными выносками, а также с возможностью добавления рамки по ГОСТ Р 21.1101-2013;
  • спецификация оборудования по ГОСТ 21.110-95;
  • структурная схема проекта с возможностью отображения по системам;
  • различные отчетные таблицы: таблица адресов, таблица шлейфов, таблица подключения распределительных коробок, таблица прокладки кабелей, таблица используемых УГО;
  • отчеты по расчетам уровня звука оповещателей, углов и зоны обзора видеокамер и емкости батарей РИП;
  • кабельные журналы шлейфов сигнализации, линий электропитания, интерфейсных шлейфов;
  • экспликация помещений по ГОСТ 21.501-93;
  • таблица используемых УГО с возможностью ее создания как для всего проекта, так и для каждого плана этажа.

Выгрузка табличных отчетов и спецификаций осуществляется в nanoCAD или в AutoCAD, а также в MS Office (Word и Excel) или OpenOffice.org (Writer и Calc).

Уникальные свойства каждого проекта позволяют выгружать отчетные документы и структурную схему с заполненной основной надписью.

Подготовка чертежей к печати осуществляется в Мастере печати nanoCAD. Подготовку к печати входящих в проект документов MS Excel и MS Word осуществляют, соответственно, Диспетчеры печати MS Excel и MS Word.

 

Программный комплекс nanoCAD Конструкции состоит из двух модулей: nanoCAD Конструкции – КЖ и nanoCAD Конструкции – Фундаменты. Комплекс предназначен для конструкторов, разрабатывающих комплекты рабочих чертежей монолитных и сборных конструкций марок КЖ и КЖИ, а также занимающихся расчетом, проектированием и выпуском рабочей документации столбчатых и ленточных фундаментов на естественном и свайном основании в строгом соответствии с отечественными нормами и стандартами. Содержит функционал nanoCAD для выполнения задач базового черчения с полной поддержкой формата *.dwg.

купить nanoCAD Конструкции

nanoCAD Конструкции – модуль Оформление

nanoCAD Конструкции – Оформление – это специализированный модуль в составе программного комплекса nanoCAD Конструкции, предназначенный для настройки комплекса и оформления рабочих чертежей в соответствии с требованиями СПДС. Модуль поставляется и работает в едином интерфейсе с остальными модулями комплекса. Содержит функционал nanoCAD для выполнения задач базового черчения с полной поддержкой формата *.dwg.

Основными функциями модуля Оформление являются:

  • управление настройками параметров всех элементов программы;
  • использование стандартных и создание пользовательских слоев с настройкой их свойств;
  • сохранение настроек в файле для их последующего использования в других проектах;
  • отрисовка строительных осей на чертеже – по отдельности или как массива;
  • обозначение на чертеже ассоциативных высотных отметок и отметок на планах;
  • отрисовка выносок на чертежах с использованием записной книжки и специальных символов;
  • нанесение на чертеж разрезов, фрагментов и флажков изменений;
  • использование масштабного текста в чертеже (с применением записной книжки и спецсимволов);
  • использование записной книжки с возможностью пополнения пользовательских страниц и таблиц;
  • отрисовка граничных штриховок с возможностью их редактирования;
  • использование в работе специальных инструментов построения;
  • использование инструментов определения площади по контуру;
  • сохранение шаблонов спецификаций, разработанных пользователем, с возможностью последующего редактирования таблиц;
  • использование инструментов управления слоями чертежа.

 

Рис.1 Панели инструментов оформления чертежа

nanoCAD Конструкции – модуль КЖ

nanoCAD Конструкции – КЖ – это специализированный модуль в составе программного комплекса nanoCAD Конструкции, предназначенный для конструкторов, разрабатывающих комплекты рабочих чертежей марок КЖ и КЖИ в строгом соответствии с отечественными нормами и стандартами.

Основными функциями модуля КЖ являются:

  • разработка чертежей марок КЖ и КЖИ в соответствии с отечественными стандартами;
  • разработка чертежей марок КЖ и КЖИ в соответствии с ДБН В.2.6-98:2009 (Украина);
  • использование универсальных инструментов схематичного и детального армирования;
  • автоконтроль норм проектирования по СНиП 2.03.01-84, СП 52-101-2003;
  • автоматическое специфицирование арматурных изделий;
  • автоматическое проектирование и специфицирование сварных сеток по ГОСТ 23279-85;
  • отрисовка нестандартных арматурных изделий;
  • автоматизированная отрисовка арматурных изделий: хомутов, шпилек, спиралей, фиксаторов и т.д.;
  • использование стандартных и создание пользовательских закладных изделий;
  • расширенные возможности работы с элементами металлопроката;
  • возможность получения всех видов спецификаций, в том числе ведомости расхода стали и ведомости деталей с автоматической вставкой эскиза детали;
  • подбор и проектирование перемычек;
  • автоматическая генерация спецификаций и ведомостей;
  • автоматизированная раскладка плит перекрытий на участках перекрытия с возможностью редактирования участка;
  • обеспечение полной совместимости с чертежами, выполненными в Project StudioCS;

Инструменты армирования железобетонных конструкций

Схематичное армирование

Область применения программных средств этого раздела – выполнение схем армирования железобетонных конструкций. Возможности предлагаемых инструментов:

  • выбор нормативного документа из диалогового окна Сортамент арматуры, определяющего последующий выбор класса и диаметра линейных элементов армирования (стержни и детали), а также контрольных параметров при их создании;
  • возможность автоматически присвоить арматуре, ранее отрисованной по СНиП 2.03.01-84*, соответствующие классы по СП 52-101-2003 путем выбора нужной позиции в диалоговом окне;
  • отрисовка на чертеже линейных элементов армирования с возможностью присвоения параметров (стержни, детали и закладные изделия);
  • возможность управлять включением элемента армирования в состав конструкции и спецификации при его создании и редактировании;
  • возможность преобразования стандартных элементов чертежа формата *.dwg (линии, полилинии и дуги) в объекты схематичного армирования (стержни, детали и закладные изделия);
  • инструмент Участки распределения арматуры, предназначенный для создания участков распределения правильной и произвольной формы с учетом отверстий;
  • при использовании инструмента Массив на участке создается связанная группа объектов программы (участок распределения, линейный элемент армирования и ассоциативная выноска). Все объекты связанной группы доступны для редактирования. Количество арматурных стержней в этом случае приводится в метрах с учетом общей площади участка распределения;
  • распределение линейных элементов армирования (стержни, детали и изделия) по диапазону распределения, причем геометрия направляющей может быть различной. Все объекты связанной группы доступны для редактирования;
  • формирование на чертеже условного арматурного сечения (стержень, деталь и изделие) по условному диаметру, задаваемому пользователем;
  • распределение условных арматурных сечений по параметрам и траекториям, выбираемым пользователем;
  • условное изображение арматурных сеток с маркой и с параметрами ранее отработанных в проекте марок арматурных изделий;
  • отрисовка сечения арматурной сетки с присвоением марки;
  • отрисовка группы сеток с присвоением марки;
  • раскладка сеток на участке с присвоением марок основных и добавочных сеток;
  • добавление изображения анкеров к линейным элементам армирования и редактирование изображений анкеров;
  • редактирование линейных элементов армирования;
  • преобразование условных изображений в ранее разработанные марки деталей и изделий с последующим включением их в спецификации.

Инструменты армирования железобетонных конструкций

Детальное армирование

Область применения программных средств этого раздела – выполнение чертежей армирования разрезов и деталей железобетонных конструкций. Возможности предлагаемых инструментов:

  • отрисовка арматурных стержней и деталей с учетом их количества, исходя из принятого типа распределения по конструкции (по длине конструкции, по указанной длине и по количеству);
  • возможность управлять включением элемента армирования в состав конструкции и спецификации при его создании и редактировании;
  • учет количества арматурных деталей (хомутов, шпилек и скоб), исходя из принятого типа распределения по конструкции (по длине конструкции, по указанной длине и по количеству);
  • определение длины отрисовываемого поперечного сечения стержня или детали с учетом метода определения его длины в конструкции (по длине конструкции, по указанной длине);
  • возможность использования зарегистрированных марок арматурных изделий, созданных при разработке схем армирования;
  • возможность преобразования стандартных элементов чертежа формата *.dwg (линии, полилинии и дуги) в объекты детального армирования (стержни и детали);
  • редактирование стержней;
  • порядок следования стержней на чертеже (эта возможность позволяет получить представление о расположении стержней в конструкции);
  • отрисовка границ защитного слоя для последующего его использования при армировании конструкции;
  • распределение поперечных сечений стержней в конструкции (с учетом нормативных требований);
  • отрисовка хомутов, шпилек и скоб (вид спереди) по отрисованным ранее поперечным сечениям стержней с последующей регистрацией чертежа детали;
  • автоматическое формирование эскиза детали в процессе регистрации ее чертежа и автоматическое добавление эскиза в формируемую ведомость деталей;
  • создание вида хомутов, шпилек и скоб сбоку с использованием параметров ранее созданных марок для получения полных данных об элементе;
  • отрисовка чертежа арматурная спираль и подсчет общей длины стержня;
  • отрисовка фиксатора-разделителя (вид спереди, вид сбоку и вид сверху и подсчет полной длины стержня.

Закладные изделия

Набор инструментов Закладные изделия предлагает следующие возможности:

  • использование в чертежах марок унифицированных закладных изделий по серии 1.400-15 с учетом возможности определения параметров анкеровки и подбора марки стали;
  • отрисовка элементов металлопроката, включая листовой прокат (ГОСТ 103-76, ГОСТ 82-70, ГОСТ 8568-77, ГОСТ 19904-90, ГОСТ 19903-74), с учетом марки стали, выбираемой в соответствующем диалоговом окне;

Рис. 2. Чертеж металлической фермы

  • произвольная резка элементов металлопроката, в том числе отверстий произвольной конфигурации;
  • отрисовка раззенкованного отверстия на виде листового проката сверху и сбоку с проверкой принимаемого решения;
  • добавление высаженной головки к детальным стержням;
  • обозначение диаметра загиба для оформления чертежей арматурных стержней детального армирования;
  • изображение сварного шва в плане и сечении;
  • генерация марок строповочных петель с отрисовкой марки строповочной петли на чертеже и последующим ее использованием в схематичном армировании.

Арматурные изделия

Раздел предназначен для разработки чертежей марок сварных сеток и каркасов. Инструмент Сетки сварные по ГОСТ 23279-85 позволяет быстро и корректно выбрать значения параметров, автоматически выполнить вычисления, а также подготовить изображение марки сетки или каркаса для вставки в чертеж. Все выбираемые параметры сеток соответствуют значениям ГОСТ.

В процессе формирования марок сеток выполняются следующие параметры:

  • автоматически контролируются наборы диаметров продольных и поперечных стержней по условиям сварки и соответствие габаритов сетки разрешенным параметрам;
  • набор диаметров автоматически изменяется в соответствии с нормативным документом, принятым на стадии начала работы над проектом (СНиП 2.03.01-84 или СП 52-101-2003);
  • на основе выбранных параметров изделия автоматически калькулируются общие размеры сетки (длина и ширина). Если полученное значение превышает разрешенную величину, программа не позволяет создать сетку;
  • автоматически генерируется стандартная марка изделия для вставки в спецификацию;
  • общая масса изделия вычисляется автоматически (используются данные стержней, входящих в состав сетки) (рис. 3);
  • программа позволяет, используя специальные инструменты резки стандартных арматурных изделий и сборки новой марки из разрозненных детальных, схематичных элементов армирования и элементов металлопроката,
  • формировать нестандартные арматурные изделия.

Рис. 3. Чертежи раскладки сеток

Технология, порядок работы и возможности формирования чертежей марок арматурных каркасов аналогичны процессу формирования чертежей марок сварных арматурных сеток.

Ассоциативные выноски

Раздел содержит команды, предназначенные для создания на чертеже ассоциативных выносок, обеспечивающих жесткую связь данных в выноске и элементе.

  • Обозначение элемента (создание одиночной выноски и выноски с группы элементов). При создании выноски с группы элементов контролируются параметры каждого элемента. Применяется для схематичных, детальных элементов армирования и закладных деталей.
  • Гребенчатая выноска. При создании выноски с группы элементов контролируются параметры каждого элемента. Применяется для схематичных и детальных элементов армирования.
  • Цепная выноска. При создании выноски с группы элементов контролируются параметры каждого элемента. Применяется для схематичных и детальных элементов армирования.
  • Обозначение сеток. Команда предназначена для получения ассоциативных выносок как с отдельных схематичных сеток, так и с массивов.
  • Позиционирование деталей изделия. Команда предназначена для получения ассоциативных выносок с элементов чертежей марок сеток и каркасов.
  • Обозначение диаметров загибов арматурных стержней (арматурные стержни детального армирования).
  • Обозначение маркировки сварных швов.

Ассоциативные выноски ко всем элементам армирования обеспечивают автоматическое обновление данных выноски при изменении свойств объекта и данных об элементе в выноске.

Сборки и спецификации

Раздел содержит команды, выполняющие сервисные функции. Возможности, предоставляемые инструментами этого раздела:

  • возможность разгиба анкерного крюка;
  • регистрация чертежа детали для последующего использования сформированной марки в чертежах конструкций;
  • резка массива стержней для создания нестандартных арматурных изделий;
  • сборка и маркировка изделий из отдельных элементов армирования, в том числе арматурных и закладных.
  • сборные железобетонные конструкции

Составные перемычки над проемами

Раздел содержит базу данных стандартных элементов (перемычки брусковые, плитные, фасадные, сортамент металлопроката), используемых при формировании составных перемычек. База сечений перемычек включает множество готовых сечений, а также обеспечивает возможность:

  • быстрого и удобного формирования и редактирования сечений с помощью специального диалога;
  • удобного отбора сечений из базы – по параметрам проема и стены.

Программа обеспечивает автоматический подбор вариантов реализации каждого элемента сечения в базе данных проекта, создание маркировки и сохранение всей необходимой информации в чертеже. При формировании перемычки автоматически отслеживается соответствие графических параметров данным из базы, в случае их несоответствия программа сообщает пользователю об ошибке. Ведомости и спецификации перемычек по этажам, фрагментам или по всему объекту формируются в автоматическом режиме.

Рис. 4. Пример чертежа схемы расположения элементов перемычек

Плиты перекрытий

Раздел содержит базу данных стандартных плит перекрытия. Реализованы следующие функции:

  • раскладка как одиночной плиты, так и массива плит определенного типа, задаваемого пользователем;
  • автоматическая раскладка плит по заданному участку, подбор нескольких вариантов раскладки с использованием плит из базы проекта;
  • контроль опирания плит на стену;
  • распределение монолита по участку;
  • редактирование раскладки и одиночных плит;
  • перестановка плит и монолитных участков в пределах существующего участка раскладки;
  • слияние и разбиение монолитных участков в пределах раскладки;
  • замена плиты на монолитный участок и наоборот, а также замена плиты на плиту другого размера;
  • перенумерация плит перекрытий;
  • получение информации по указанным плитам;
  • формирование спецификаций плит перекрытий на этаж, объект, по выбору на чертеже;
  • подсчет в спецификации к схеме раскладки плит перекрытия количества закладных изделий, отрисованных на чертеже раскладки плит с использованием инструмента Условное изображение элемента раздела Схематичное армирование.


Результатом применения инструментов программы являются полностью оформленные чертежи марок КЖ и КЖИ. Сроки выполнения проектных работ снижаются минимум на 30%. В качестве примера приводим чертеж перекрытия, выполненный средствами программы nanoCAD Конструкции.

Рис. 5. Пример чертежа армирования приямка

nanoCAD Конструкции – Фундаменты

nanoCAD Конструкции – Фундаменты – это специализированный модуль в составе программного комплекса nanoCAD Конструкции, предназначенный для подготовки схем расположения и чертежей столбчатых фундаментов на свайном и естественном основании, включая расчет основания по деформациям для фундаментов колонн промышленных и гражданских зданий, расчет свайного куста на прочность по несущей способности сваи и расчет монолитных и сборных ленточных фундаментов.

Основными функциями модуля Фундаменты являются:

  • Расчет, конструирование и получение комплекта рабочих чертежей столбчатых фундаментов на свайном и естественном основании.
  • Расчет, конструирование и получение комплекта рабочих чертежей монолитных и сборных ленточных фундаментов на свайном и естественном основании.
  • Отрисовка свайных оснований различных конфигураций (с автоматическим графическим разделением элементов, различающихся по параметрам) и получение поэтапных и суммарных спецификаций по свайным полям.
  • Оформление выходной документации средствами модуля «Оформление» в строгом соответствии с требованиями СПДС.

Расчет и конструирование фундаментов производятся в соответствии со следующими нормативными документами:

  • СНиП 2.02.01-83 Основания зданий и сооружений;
  • Пособие по проектированию оснований зданий и сооружений (Москва, 1986 г.);
  • СНиП 2.02.03-85 Свайные фундаменты;
  • СП 50-102-2003 Проектирование и устройство свайных фундаментов;СНиП 2.01.07-85 Нагрузки и воздействия.

Столбчатые фундаменты на естественном основании

  • Расчет, проектирование и вычерчивание отдельного фундамента под сдвоенные одиночные железобетонные или металлические колонны произвольного положения и ориентации в плане в режиме прямой или обратной задачи (сборный и монолитный вариант исполнения для железобетонных колонн).

Рис. 6. Задание на расчет фундамента

  • Итоговая информация, размещаемая в поле сообщений диалогового окна, содержит сведения о характеристиках, определяющих параметры фундаментов.
  • При наличии подвала (в любых четвертях в плане) возможен автоматический сбор вертикальных весовых и горизонтальных нагрузок от веса обводненного грунта с учетом полезной нагрузки на поверхности.
  • Удобный аппарат ограничений для управления результатами расчетов.
  • Расчет основания по деформациям с использованием различных моделей грунтового основания (линейно-деформируемое пространство или линейно-деформируемый слой).
  • Учет взаимного влияния при вычислении осадок фундаментов.
  • Формирование типов колонн и нагрузок на подколонник.
  • Автоматическая маркировка и генерация спецификации.
  • Генерация чертежей КЖ, КЖИ с полным комплектом спецификаций и ведомостью расхода стали (рис. 7, 8).
  • Формирование файла с отчетом по результатам расчета.

Рис. 7. Рабочие чертежи рассчитанного фундамента

Рис. 8. Чертежи арматурных изделий

Столбчатые фундаменты на свайном основании

  • Расчет, проектирование и вычерчивание отдельного фундамента под сдвоенные одиночные железобетонные или металлические колонны произвольного положения и ориентации в плане в режиме прямой или обратной задачи (сборный и монолитный вариант исполнения для железобетонных колонн).
  • Итоговая информация, размещаемая в поле сообщений диалогового окна, содержит сведения о характеристиках, определяющих параметры фундаментов.
  • При наличии подвала (в любых четвертях в плане) возможен автоматический сбор вертикальных весовых и горизонтальных нагрузок от веса обводненного грунта с учетом полезной нагрузки на поверхности (по аналогии со столбчатым фундаментом на естественном основании).
  • Выбор свай по типу и способу забивки из перечня, учитывающего все возможные типы свай, заложенные в базу программы.
  • Учет проектных ограничений при расчете столбчатого фундамента на свайном основании.
  • Учет взаимного влияния любых типов фундаментов (на естественном или свайном основании) при вычислении осадок (по аналогии со столбчатым фундаментом на естественном основании).
  • Удобный аппарат ограничений для управления результатами расчетов.
  • Расчет основания по деформациям с использованием различных моделей грунтового основания (линейно-деформируемое пространство или линейно-деформируемый слой).
  • Автоматическая маркировка и генерация спецификации (по аналогии со столбчатым фундаментом на естественном основании).
  • Генерация чертежей КЖ, КЖИ с полным комплектом спецификаций и ведомостью расхода (по аналогии со столбчатым фундаментом на естественном основании).

Рис. 9. Схема расположения фундаментов на свайном основании

  • Формирование файла с отчетом по результатам расчета (по аналогии со столбчатым фундаментом на естественном основании).

Учет сейсмических воздействий при расчете фундаментов

Параметры, принимаемые в расчет для учета сейсмических воздействий:

  • балльность района строительства;
  • категория грунта по сейсмическим свойствам;
  • вероятность превышения сейсмической интенсивности;
  • класс ответственности здания по СНиП 2.01.07-85;
  • введение параметров сейсмической опасности объекта обуславливает введение особых сочетаний усилий на обрезе фундамента.

Монолитные ленточные фундаменты на естественном основании

  • Расчет монолитного ленточного фундамента с формированием файла отчета по результатам.
  • Раскладка верхних и нижних сеток подошвы или отдельных стержней на схеме расположения по данным расчета.
  • Формирование спецификации арматурных изделий и стержней, входящих в состав монолитного ленточного фундамента.
  • Получение ведомости расхода стали на монолитный ленточный фундамент.
  • Формирование и автоматическая отрисовка плана и разреза по данным маркера фундамента.

Рис. 10. План монолитного ленточного фундамента на естественном основании

Монолитные ленточные фундаменты на свайном основании

Расчет монолитного ленточного фундамента с формированием файла отчета по результатам.

  • Отрисовка свайного основания в соответствии с результатами расчета.
  • Раскладка верхних и нижних сеток подошвы или отдельных стержней на схеме расположения по данным расчета.
  • Формирование спецификации арматурных изделий и стержней, входящих в состав монолитного ленточного фундамента.
  • Получение ведомости расхода стали на монолитный ленточный фундамент.

Рис. 11. Чертеж рассчитанного монолитного ленточного фундамента на свайном основании

  • Формирование и автоматическая отрисовка разреза по данным маркера фундамента.

Сборные ленточные фундаменты на естественном основании и стены из блоков ФБС и ФБП

  • Расчет по деформациям ленточных фундаментов, проектирование и раскладка в управляемом автоматическом режиме фундаментных плит на схеме расположения.

Рис. 12. Расчет сборного ленточного фундамента. Отметки

  • Возможность сплошной или прерывистой раскладки фундаментных плит.
  • Раскладка в полуавтоматическом режиме фундаментных блоков в развертках стен.
  • Удобный сервисный аппарат редактирования раскладки блоков и фундаментных плит.

Рис. 13. Формирование схемы раскладки блоков

  • Раскладка (в полуавтоматическом режиме) рандбалок на схеме расположения фундаментов.
  • Автоматическая маркировка стеновых блоков и рандбалок на чертеже в соответствии с позициями в спецификации.
  • Минимизация объема монолитных заделок при раскладке сборных блоков и фундаментных плит.
  • Автоматический подсчет расхода монолитного бетона в развертках стен из сборных блоков и в сборных ленточных фундаментах, учет его в спецификациях.
  • Полный набор спецификаций к схемам расположения.
  • Формирование и автоматическая отрисовка разреза по данным маркера сборного ленточного фундамента.

Рис. 14. Чертеж сборного ленточного фундамента

Свайные ленточные ростверки и поля

  • Трассировка и вычерчивание однорядных и многорядных свайных лент линейной, дуговой или круговой конфигурации с шахматной или рядовой расстановкой свай.
  • Наличие сервисного аппарата, позволяющего размещать заданное количество свай или же задавать расстояния между ними с широкими возможностями манипулирования «остатком».
  • Отрисовка и редактирование контуров ростверков.
  • Вычерчивание свайных полей прямоугольного или кругового очертаний с шахматной или рядовой расстановкой свай, с заданным количеством свай или по заданным расстояниям между ними.
  • Автоматическая нумерация свай тремя различными способами.
  • Автоматическая визуальная индикация свай по их маркам и типам.

Рис. 15. Идентификация свайных полей

  • Автоматическая генерация спецификации и таблицы отметок.
  • Возможность многократных редакционных изменений, при которых ранее созданная нумерация, визуальная индикация и набор спецификаций автоматически обновляются по указанию пользователя.

Рис. 16. Чертеж свайного поля

 


#fc3424 #5835a1 #1975f2 #2fc86b #ftooc9 #eef12146 #200714230707